An intact U5-leader stem is important for efficient replication of simian immunodeficiency virus.
نویسندگان
چکیده
Previous work has shown that four deletions in simian immunodeficiency virus (SIV), termed SD1a, SD1b, SD1c, and SD6, which eliminated sequences at nucleotide positions 322 to 362, 322 to 370, 322 to 379, and 371 to 379, respectively, located downstream of the primer binding site, impaired viral replication capacity to different extents. Long-term culturing of viruses containing the SD1a, SD1b, and SD6 deletions led to revertants that possessed wild-type replication kinetics. We now show that these revertants retained the original deletions in each case but that novel additional mutations were also present. These included a large deletion termed D1 (nt +216 to +237) within the U5 region that was shown to be biologically relevant to reversion of both the SD1a and SD1b constructs. In the case of SD6, two compensatory point mutations, i.e., A+369G, termed M1, located immediately upstream of the SD6 deletion, and C+201T, termed M2, within U5, were identified and could act either singly or in combination to restore viral replication. Secondary structure suggests that an intact U5-leader stem is important in SIV for infectiousness and that the additional mutants described played important roles in restoration of this motif.
منابع مشابه
Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription.
Reverse transcription of the Human Immunodeficiency Virus type I (HIV-1) RNA genome is primed by a cellular tRNA-lys3 molecule that binds to the primer binding site (PBS). The PBS is predicted to be part of an extended RNA structure, consisting of a small U5-PBS hairpin and a large U5-leader stem. In this study we stabilized the U5-leader stem of HIV-1 to study its role in reverse transcription...
متن کاملA conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication.
The untranslated leader region of the human immunodeficiency virus (HIV) RNA genome contains multiple hairpin motifs. The repeat region of the leader, which is reiterated at the 3' end of the RNA molecule, encodes the well-known TAR hairpin and a second hairpin structure with the polyadenylation signal AAUAAA in the single-stranded loop [the poly(A) hairpin]. The fact that this poly(A) stem-loo...
متن کاملRNA structure and packaging signals in the 5' leader region of the human immunodeficiency virus type 1 genome.
The leader region of the human immunodeficiency virus type 1 (HIV-1) genome has a highly folded structure, comprising at least two RNA stem-loops [the transactivation response (TAR) and poly(A) hairpins] near its 5' end and four others (SL1 to SL4) downstream. Each of these stem-loops contributes to the function of the HIV-1 packaging signal, which efficiently targets genomic RNA into nascent v...
متن کاملRNA Secondary Structure Based Prediction of Simian Immunodeficiency Virus Nucleocapsid NCp8 Protein Recognition Site
Efficient and specific encapsidation of retroviral RNA by the assembling virion particle is an essential step in the retrovirus life cycle. In this process, full length genomic RNA is preferentially packaged, whereas spliced viral RNA and cellular RNA are generally excluded from nascent particles. There are two elements necessary for specific packaging of viral RNA. One of them, cis-acting sequ...
متن کاملEffects of Sodium Valproate on the Replication of Herpes Simplex Virus Type 1: An in Vitro Study
Background: Sodium valproate, an anticonvulsant drug, is reported to stimulate Human Immunodeficiency Virus type 1 and Human cytomegalovirus replication. Since epileptic patients undergoing sodium valproate therapy may suffer from various virus infections, the effect of this drug on replication of viruses especially those affecting neuronal tissues such as Herpes simplex virus type 1 is worthy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 75 23 شماره
صفحات -
تاریخ انتشار 2001